
DENICOMP SYSTEMS Winsock RCMD32.DLL
Copyright 2002 Denicomp Systems. All rights reserved.

- 1 -

DESCRIPTION

Winsock RCMD32.DLL is a Microsoft Win32 Dynamic Link Library that provides a Windows Sockets
compatible function that allows you to execute commands on a remote host and retrieve the output of those
commands for processing by your program.

Winsock RCMD32.DLL is similar to the rcmd library function found on many Unix systems. The DLL
includes the main WinsockRCmd function which initiates the command, plus functions for receiving data over
the connection from the remote host executing the command.

The Winsock RCMD32.DLL function calls are completely source code compatible with the 16-bit Winsock
RCMD.DLL.

The remote host must be a system running the rshd or rexecd server process, such as a Unix system or a
Windows system running Denicomp Systems’ Winsock RSHD/95 or Winsock RSHD/NT.

Winsock RCMD32.DLL is designed to execute non-interactive remote commands. If you need to execute an
interactive command on the remote host, use a utility like Telnet.

REQUIREMENTS

Winsock RCMD32.DLL requires a PC running a 32-bit Windows operating system and any programming
language that supports calls to DLL functions, such as C, Visual Basic, or Powerbuilder.

INSTALLATION

To install Winsock RCMD32.DLL, create a directory where you would like it to be installed and simply copy
the files from the diskette. From a command prompt, type:

 COPY A:*.*

The directory where you install the file RCMD32.DLL must be included in your PATH environment variable
or you can copy this file to your Windows directory (usually \WINNT or \WINDOWS) or Windows System
directory (such as \WINNT\SYSTEM32).

This diskette contains the file RCMD32.LIB, which is the import library for RCMD32.DLL. C programmers
must link this file to your programs to use RCMD32.DLL, unless you are going to load and unload
RCMD32.DLL dynamically using LoadLibrary() and FreeLibrary().. You may move this file to the directory
containing your other C libraries if you wish.

The diskette also contains the file RCMD32.H, which is a C header file containing the function declaration for
Winsock RCMD32.DLL. C programmers will “#include” this file in programs. You may move this file to a
directory your compiler searches for header files if you wish.

The diskette also contains an example C program: CRSH. The file CRSH.C is the source code, CRSH.MAK is
the makefile, and CRSH.EXE is the compiled program.

The was written using Micrsoft Visual C/C++. To compile it with Visual C/C++, type:

 nmake /f crsh.mak crsh.exe

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 2 -

The sample program is similar to the RSH command. Its syntax is:

 crsh host user command

Where host is the host name of the remote system, user is the login name of a user on the remote host, and
command is the command to be executed. The user parameter must be specified, unlike RSH. The command
may contain spaces. However, if it contains any special characters that are interpreted by the Windows
command shell, you must enclose the command in double quotes.

The output of the command, if any, will displayed on your screen. Remember, only non-interactive commands
can be executed.

FUNCTION DESCRIPTIONS

FUNCTION: WinsockRCmd

C:

INT WinsockRCmd (Rhost, RPort, LocalUser, RemoteUser, Cmd, ErrorMsg, ErrorLen)
 LPSTR RHost;
 int RPort;
 LPSTR LocalUser;
 LPSTR RemoteUser;
 LPSTR Cmd;
 LPSTR ErrorMsg;
 int ErrorLen;

Visual Basic:

Declare Function WinsockRCmd Lib "RCMD32.DLL"
 (ByVal RHost As String,
 ByVal RPort As Long,
 ByVal LocalUser As String,
 ByVal RemoteUser As String,
 ByVal Cmd As String,
 ByVal ErrorMsg As String,
 ByVal ErrLen As Long) As Long

Powerbuilder:

Function Int WinsockRCmd
 (Ref String RHost, &
 Int RPort, &
 Ref String LocalUser, &
 Ref String RemoteUser, &
 Ref String Cmd, &
 Ref String ErrorMsg, &
 Int ErrLen) Library "RCMD32.DLL"

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 3 -

Usage:

The WinsockRCmd function initiates a connection to the remote host and executes the specified command if
access is permitted. You can then use the RCmdRead function to receive the standard output and standard
error output of the command.

Parameters:

RHost:

Specifies the name of a remote host that is listed in the "hosts" file. You will receive an error if the
host name is not found.

RPort:

Specifies the port to use for the connection. Normally, this is the well-known port number of 514,
which is the rshd server on the remote host. You may also specify port number 512, which is the
rexecd server. The difference is explained later.

You can specify the port number or use the Windows Sockets getservbyname() function if a services
file is present.

LocalUser:

The user name of the user on the local host (the PC). This can be NULL or an empty string if you
want Winsock RCMD32.DLL to determine the name. The method it uses is described later.

This name is sent as the local user to the rshd server on the remote host. In general, it should be the
same as the RemoteUser parameter.

RemoteUser:

The user name to be used at the remote host. This must be a valid user name at the remote host. It
can be NULL or an empty string if you want Winsock RCMD32.DLL to determine the name. The
method is uses it described later.

If you are using the rexecd server instead of the rshd server, specify the user’s password in this
parameter. The rexecd server is explained later.

Cmd:

The command to be executed at the remote host.

ErrorMsg:

A pointer to an area that can be used to store an error message from WinsockRCmd. If an error
occurs while connecting to the remote host, WinsockRCmd will return a negative result and will store
an error message here. You can then optionally use the error message as diagnostic output in your
program.

ErrorLen:

The maximum length of the error message returned. This is the number of characters available in
ErrorMsg.

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 4 -

Return Value:

If WinsockRCmd successfully connects to the remote host and begins executing the specified command, it will
return an integer "handle" that must be used by the RCmdRead, RCmdHandle, and RCmdClose functions.
This handle will always be greater than or equal to zero.

If WinsockRCmd is not successful, it will return a negative number. If the number is -1, an error internal to
WinsockRCmd occurred and a message describing the error will be stored in ErrorMsg. If the number is not -
1, it is a Windows Sockets error code (but negative). ErrorMsg will also contain a message attempting to
describe the error.

Notes:

The error message returned in ErrorMsg may contain newline characters (ASCII 10). The message is suitable
for display using the standard Windows MessageBox function or the Visual Basic MsgBox command/function.

Execution of interactive commands (commands requiring keyboard input) is not supported.

Unlike the Unix rcmd function, WinsockRCmd does not have the ability to separate the standard output and
the standard error output of the remote command. Output to the Unix standard output and standard error will
be intermixed.

Note for Visual Basic and Powerbuilder Users:

If you are using Visual Basic, Powerbuilder, or any similar language that uses dynamically allocated string
variables, you must allocate space in the string passed as the ErrorMsg parameter before calling
WinsockRCmd. This is very important; your program will most likely abort with a Windows error when an
error message needs to be returned.

In Visual Basic, you can do this with the String$() function. In Powerbuilder, you can do this with the Space()
function.

For example, if you want to allow for 128 characters in the ErrorMsg parameter, before calling
WinsockRCmd you would do the following:

 errmsg$ = String$(128,Chr$(0))

In Powerbuilder, you would do this:

 errmsg = Space(128)

Using the rexecd Server

If you wish to use the rexecd server instead of the rshd server, specify a port number of 512 instead of 514 in
the WinsockRCmd function call.

The rexecd server is similar to the rshd server, except that it requires a password to be specified. You must
make provisions in your software to allow the user to enter the password at the appropriate time or retrieve it
from some storage area (i.e. an initialization file). Winsock RCMD32.DLL does not ask for the password.

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 5 -

When using rexecd, in addition to using port 512 instead of 514, you must pass the password in the
RemoteUser parameter in the WinsockRCmd function call (the fourth parameter). All other parameters and
the remaining functions described in this manual function in the same manner.

FUNCTION: RCmdRead

C:

INT RCmdRead (hRCmd, RData, RCount)
 int hRCmd;
 LPSTR RData;
 int RCount;

 Visual Basic:

Declare Function RCmdRead Lib "RCMD32.DLL"
 (ByVal hRCmd As Long,
 ByVal RData As String,
 ByVal RCount As Long) As Long

Powerbuilder:

Function Int RCmdRead
 (Int hRCmd, &
 Ref String RData, &
 Int RCount) Library "RCMD32.DLL"

Usage:

The RCmdRead function reads the output of the command executed with WinsockRCmd. This allows you to
capture the standard output and standard error output of the command you executed.

Parameters:

hRCmd:

This is the integer "handle" returned from the WinsockRCmd function.

RData:

A pointer to an area of memory to hold the data received.

RCount:

The maximum number of bytes to receive. This should be between 1 and 8192. You can specify a
number larger than 8192, but no more than 8192 bytes will be returned in any single call.

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 6 -

Return Value:

If RCmdRead is sucessful, it returns the number of bytes read. It will be a number greater than zero.

If RCmdRead returns zero, there is no more data to read. The command has ended and you should call
RCmdClose to terminate the connection.

If RCmdRead returns a negative number, an error has occurred. The number will be the Windows Sockets
error number (but negative). You should call RCmdClose even if an error occurs to free all resources used by
the connection.

Important Note for Visual Basic Users:

You must reserve space in the Visual Basic string passed as the RData paramter that is to receive the data
returned. You do this with the String$ function. For example, if you wanted to read 64 bytes at a time into the
variable d$, you would:

 d$ = String$(64, Chr$(0))
 result% = RCmdRead(hCmd%, d$, 64)

Afterwards, you should only use the number of bytes returned in result% in the string. Use the Left$ function
for this (i.e. Left$(d$,result%)).

Important Note for Powerbuilder Users:

Like Visual Basic, you must reserve space in the string passed as the RData paramter that is to receive the data
returned. You do this with the Space() function. For example, if you wanted to read 64 bytes at a time into the
variable d, you would:

 d = Space(64)
 result = RCmdRead(hCmd, d, 64)

Afterwards, you should only use the number of bytes returned in result in the string. Use the Left() function for
this (i.e. Left(d,result)).

If you are using any other language that uses dynamically allocated strings, you must do something similar to
these two examples.

FUNCTION: RCmdReadByte

C:

INT RCmdRead Byte(hRCmd)
 int hRCmd;

 Visual Basic:

Declare Function RCmdReadByte Lib "RCMD32.DLL"
 (ByVal hRCmd As Long) As Long

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 7 -

Powerbuilder:

Function Int RCmdReadByte (Int hRCmd) Library "RCMD32.DLL"

Usage:

The RCmdReadByte function, like the RCmdRead function, reads the output of the command executed with
WinsockRCmd. However, it instead reads one character at a time and returns each character as an integer
return value.

The RCmdReadByte function is useful when it is not possible or not convenient to pass a pointer to an area of
memory as required by RCmdRead.

Parameters:

hRCmd:

This is the integer "handle" returned from the WinsockRCmd function.

Return Value:

If RCmdReadByte is sucessful, it returns the next character read from the standard output or standard error of
the command executed. It will be a positive number between 1 and 255.

If RCmdReadByte returns zero, there is no more data to read. The command has ended and you should call
RCmdClose to terminate the connection.

If RCmdReadByte returns a negative number, an error has occurred. The number will be the Windows
Sockets error number (but negative). You should call RCmdClose even if an error occurs to free all resources
used by the connection.

USING ASYNCHRONOUS READS

The RCmdRead and RCmdReadByte functions normally block (don't return) until there is either some data
received, the remote command ends, or there is some TCP/IP error that closes the connection. This means that
your program will be unresponsive while these functions are waiting for data to arrive.

You can execute the RCMD32.DLL functions in a separate thread in your program (separate from the user
interface thread) so your program remains responsive to the user.

You can also use a Windows Sockets (Winsock) function to switch to asynchronous reads. This will cause
Winsock to send messages to your program when data arrives or the connection is closed (i.e. the remote
command ends) instead of having your program loop on blocking RCmdRead calls.

To do this, you must call the Winsock function WSAAsyncSelect and tell it to send messages on read events
and close events. This function is documented in the Windows Sockets documentation, but here is a brief
description of its parameters and usage:

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 8 -

C: int WSAAsyncSelect (SOCKET s, HWND hWnd, unsigned int wMsg, long lEvent)

Visual Basic: Declare Function WSAAsyncSelect Lib "wsock32.dll"
 ByVal s As Long, ByVal hWnd As Long, ByVal wMsg As Integer,
 ByVal lEvent As Long) As Long

After calling the WinsockRCmd function to establish the connection, an example would be:

 res = WSAAsyncSelect(RCmdHandle(hRCmd), m_hWnd, WM_USER+1, FD_READ + FD_CLOSE);

After this call, your program will receive the message WM_USER + 1 whenever data is available for reading
from the connection or the connection is closed (the command ends or an error occurs). You can substitute any
message value for WM_USER + 1, but that is used in this example.

When you receive the WM_USER + 1 message, check the lower word of the lEvent message parameter to
determine if you are receiving a read event or a close event. For example:

 case WM_USER + 1:
 switch (LOWORD(lEvent))
 {

 case FD_READ:
 do {
 res = RCmdRead(hRCmd, lpData, 128);
 process_data(lpData);
 } while (res > 0);
 break;
 case FD_CLOSE:
 res = WSAAsyncSelect(RCmdHandle(hRCmd), m_hWnd, 0,0);
 res = RCmdClose(hRCmd);
 break;

 }

When the FD_READ event is received, you must call RCmdRead until it returns a value less than or equal to
zero, since you do not know how much data is available to be read. When you have read all data that is
available, you will receive a return value of -10035 from RCmdRead. This is the Winsock error
WSAEWOULDBLOCK, meaning that the receive operation normally would have blocked because no data is
available. You should not treat this error code as a true error condition. It simply means that at this time,
there is no data available to be read and you should wait until the next FD_READ event occurs for more data.

Note the call to WSAAsyncSelect on the close event (FD_CLOSE). This stops Winsock from sending any
other messages and the connection can then be closed. Remember, receiving the FD_CLOSE event means that
you should close the connection with RCmdClose. Winsock does not do it for you.

The asynchronous method can easily be used in the C language, but to use that method in a language such as
Visual Basic, you will need to use a third party control that allows you to receive and process messages, such as
Message Blaster 32. Visual Basic itself only allows you to receive pre-defined messages.

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 9 -

FUNCTION: RCmdClose

C:

INT RCmdClose (hRCmd)
 int hRCmd;

Visual Basic:

Declare Function RCmdClose Lib "RCMD32.DLL"
 (ByVal hRCmd As Long) As Long

Visual Basic:

Function Int RCmdClose (Int hRCmd) Library "RCMD32.DLL"

Usage:

The RCmdClose function closes the connection to the remote host and frees all resources used by the
connection. You should call RCmdClose for each successful use of the WinsockRCmd function.

Parameters:

hRCmd:

This is the integer "handle" returned from the WinsockRCmd function.

Return Value:

If RCmdClose is sucessful, it returns zero. If it is unsuccessful, it returns a negative number that is
the Windows Sockets error number (but negative).

FUNCTION: RCmdHandle

C:

INT RCmdHandle (hRCmd)
 int hRCmd;

Visual Basic:

Declare Function RCmdHandle Lib "RCMD32.DLL"
 (ByVal hRCmd As Long) As Long

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 10 -

Powerbuilder:

Function Int RCmdHandle (Int hRCmd) Library "RCMD32.DLL"

Usage:

The RCmdHandle function returns the Windows Sockets handle (“socket”) for the connection, which can be
used to call Windows Socket functions that require a SOCKET parameter.

Parameters:

hRCmd:

This is the integer "handle" returned by the WinsockRCmd function.

Return Value:

RCmdHandle returns a Windows Sockets handle. If you call RCmdHandle on a WinsockRCmd connection
that is not opened, the return value is undefined.

DETERMINING THE USER NAME

You can pass a NULL in either the LocalUser or RemoteUser parameters in the WinsockRCmd function call
and Winsock RCMD32.DLL will determine the user name. The following only applies if you pass a NULL in
one of these parameters.

The local user name is normally the name you used when logging in to Windows. For example, if you logged
in to Windows as the user "joed", WinsockRCmd will use "joed" as the user name at the remote host.
WinsockRCmd will always convert this name to all lowercase characters.

WinsockRCmd will also look at the file WIN.INI in the Windows directory (e.g. \WINNT or \WINDOWS) for
an alternate user name.

If WIN.INI contains a section named "[RCMD]" and contains an entry named "User" in that section, the name
specified there will be used as the local user name. For example, WIN.INI might contain:

 [RCMD]
 User=joe

If this appeared in WIN.INI, the local user name would be "joe" and WinsockRCmd would use this name at
the remote host.

To support multiple users, WinsockRCmd will also look for a section named "[RCMD-user]" in WIN.INI first
for an alternate user name, where the "user" in the section name is the name used to log in to Windows.
WinsockRCmd will look at this section first; if it does not exist, it will then look at the "[RCMD]" section.

For example, if "maryk" and "joed" are both users on the Windows PC, but their user names at the remote host
are "mary" and "joe" respectively, WIN.INI might look like this:

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 11 -

 [RCMD-joed]
 User=joe

 [RCMD-maryk]
 User=mary

When the Windows user "joed" runs a program using WinsockRCmd, "joe" will be used at the remote host.
When the Windows user "maryk" runs the program, "mary" will be used instead.

SECURITY

The remote host allows access only if at least one of the following conditions is satisfied:

? The name of the local host is listed as an equivalent host in the /etc/hosts.equiv file on the remote
host. This name must also be listed in the /etc/hosts file on the remote host along with the proper IP
address.

? If the local host is not in the /etc/hosts.equiv file, the user's home directory on the remote host must
contain a .rhosts file that lists the local host and user name. The .rhosts file in the user's home
directory must be owned by either the user specified or root, and only the owner should have read and
write access. That is, it must have permissions of 0600.

? The user's login on the remote host does not require a password.

? A valid password has been supplied if using the rexecd service (port 512).

These requirements are defined by the remote shell daemon (rshd) or remote execution daemon (rexecd)
running on the remote host, not by Winsock RCMD32.DLL. For more details, you can review the
documentation for those daemons on the host system. For example, if the host is a Unix system, you can type
"man rshd" to view the manual pages for the remote shell daemon.

EXAMPLES

For a complete example of the use of WinsockRCmd in C, see the CRSH program provided in the
distribution.

For an example of the use of WinsockRCmd in Visual Basic, see the VRSH program provided in the
distribution.

DENICOMP SYSTEMS Winsock RCMD32.DLL

- 12 -

 // Assumes that the host is in "rhost", the user is in "ruser", and the
 // command is in "cmd".

 int hRCmd;
 char c;
 int result;

 hRCmd = WinsockRCmd(rhost,514,ruser,ruser,cmd,errmsg,sizeof(errmsg));

 if (hRCmd < 0)
 MessageBox(NULL,errmsg,"Remote Shell",MB_OK);
 else
 {
 while((result = RCmdRead(hRCmd,&c,128)) > 0)
 DisplayChars(c, result);
 }
 RCmdClose(hRCmd);

SUPPORT

Support is available via E-Mail:

Internet: support@denicomp.com
WWW: http://www.denicomp.com

